Tag Archives: Plate Tectonics

Plate Tectronics

Cut Away of Earth's Crust
Cut away schematic of the Earth, By derivative work: Anasofiapaixao Earth_internal_structure.png: USGS (Earth_internal_structure.png) [Public domain], via Wikimedia Commons
According to the theory of plate tectonics, the earth’s lithosphere contains plates that move gradually over the asthenosphere. The major geological processes, such as earthquakes and the formation of volcanoes and mountain belts occur at the places of the interaction of these plates. As a result, the following changes have been witnessed in the earth’s geology:

The formation of the Himalayas – when the Indian subplate burrowed under the Eurasian plate, or the formation of the Appalachian Mountains, when the North American and African plates collided. The separation of North America from Europe by the opening of the Atlantic.

The volcanic and seismic activity of the West Coast of the US occurs as a result of grinding of the North American and Pacific plates.
The above mentioned are just a few examples of the effects of plate tectonics. The geological history of earth is littered with such phenomena and processes that have made the Earth how it is today.

The Latest Findings

But as it turns out, such interactions between continental plates is not the only reason for various geological processes. Research led by a joint team of the University of Toronto and University of Aberdeen researchers has achieved an enormous breakthrough! According to the research that uses supercomputers to run a model of the Earth’s upper mantle and crust, the prehistoric geological events could have left deep ‘scars’ that may play a significant role in earthquakes, tsunamis, formation of mountains or ocean trenches and many other ongoing geological processes.

The models created by the researchers indicate that the previous plate boundaries could stay buried deep below the surface of the Earth. These structures, which are no less than many millions of years old, are located far from the current plate boundaries and may cause drastic changes in the surface properties and structure of the interior of the continents.

The researchers went a step further to propose a new map highlighting the ancient geology of the Earth. The ‘perennial plate tectonic map’ explains through illustrations how the prehistoric geological events could affect today’s geological processes. The map is based on the common tectonic map, which is taught in elementary school, but it has been modified to include the concealed, ancient plate boundaries that may be involved in plate tectonic activity in the past as well as the present.

Owing to this recent breakthrough, some major revisions are required to the fundamental idea of plate tectonics. The research paper titled, ‘Lasting mantle scars lead to perennial plate tectonics’ appeared in Nature Communications issue of June 10, 2016.